
CIS 4004: PHP – Part 4 – Pattern Matching Page 1 Dr. Mark Llewellyn ©

CIS 4004: Web-Based Information Technology

Spring 2011

Introduction to PHP – Part 4 – Pattern Matching

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/spr2011

CIS 4004: PHP – Part 4 – Pattern Matching Page 2 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Many programming problems require matching or

manipulating patterns in string variables. One reason to

match patterns is to verify data received from an XTHML

input form.

• For example, if you are expecting an XHTML form field to

provide a U.S. telephone number as input, your script needs a

way to verify that the input comprises a string of seven or ten

digits.

• Another reason to match patterns arises when your script

uses an input data file with fields that are delimited by

characters such as colons or tabs.

• Pattern matching in PHP is handled via regular expressions.

CIS 4004: PHP – Part 4 – Pattern Matching Page 3 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regular expressions (regex) are one of the black arts of

practical modern programming. Those who master regular

expressions will find that they can solve many problems

quite easily while those who don’t will waste many hours

pursuing complicated work-arounds.

• Regular expressions, although complicated, are not really

difficult to understand. Fundamentally, they are a way to

describe patterns of text using a single set of strings.

• Unlike a simple search-and-replace operations, such as

changing all instances of “Marty” to “Mark”, regex

allow for much more flexibility – for example, finding all

occurrences of the letters “Mar” followed by either “ty”

or “k”, and so on.

CIS 4004: PHP – Part 4 – Pattern Matching Page 4 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regular expressions were initially described in the 1950s by

a mathematician named S.C. Kleene, who formalized models

that were first designed by Warren McCulloch and Walter

Pitts to describe the human nervous system.

• Regex were not actually applied to computer science until

Ken Thompson (one of the original designers of the Unix

OS) used then as a means to search and replace text in his

qed editor.

• Regex eventually made their way into the Unix operating

system (and later into the POSIX standard) and into Perl as

well, where they are considered one of the language’s

strongest features.

CIS 4004: PHP – Part 4 – Pattern Matching Page 5 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• PHP actually supports both the POSIX standard and the Perl

standard of regular expressions.

• The Perl version is known as PCRE (Perl-Compatible

Regular Expressions).

• PCRE are much more powerful than their POSIX

counterparts – and consequently more complex and difficult

to use. You’ll want to master POSIX regex before you

attempt to work with PCRE.

• We’ll look at the simpler POSIX form first and then look in

more details at the PCRE format.

CIS 4004: PHP – Part 4 – Pattern Matching Page 6 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regex is, essentially, a whole new language, with its own

rules, own structures, and its own quirks. What you know

about other programming languages has little or no bearing

on regex, for the simple reason that regular expression are

highly specialized and follow their own rules.

Regular Expression Axioms as defined by S. C. Kleene

• A single character is a regular expression denoting itself.

• A sequence of regular expressions is a regular expression.

• Any regular expression followed by a * character (known as the “Kleene Star”) is a

regular expression composed of zero or more instances of that regular expression.

• Any pair of regular expressions separated by a pipe character (|) is a regular

expression composed of either the left or the right regular expression.

• Parentheses can be used to group regular expressions.

CIS 4004: PHP – Part 4 – Pattern Matching Page 7 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• While Kleene’s definition of what makes a regular expression

might, at first, seem confusing, the basics are actually pretty

easy to understand.

• First, the simplest regular expression is a single character. For

example, the regex a would match the character “a” in the

word “Mark”.

• Next, single character regex can be grouped by placing them

next to each other. Thus the regex Mark would match the

word “Mark” in “Your instructor is Mark for CIS 4004.”

• So far, regex are not very different from normal search

operations. However, this is where their similarities end.

CIS 4004: PHP – Part 4 – Pattern Matching Page 8 Dr. Mark Llewellyn ©

Pattern Matching In PHP
• The Kleene Star can be used to create regex that can be

repeated any number of times (including none).

• Consider the following string:

seeking the treasures of the sea

• The regex se* will be interpreted as “the letter s followed by

zero or more instances of the letter e” and will match the

following:

– The letters “see” of the work “seeking”, where the regex e is repeated

twice.

– Both instances of the letter s in “treasures”, where s is followed by

zero instances of e.

– The letters “se” of the work “sea”, where the e is present once.

CIS 4004: PHP – Part 4 – Pattern Matching Page 9 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• It’s important to understand in the regex se* that only the

expression e is considered with dealing with the star.

• Although its possible to use parentheses to group regular

expressions, you should not be tempted to think that using

(se)* is a good idea, because the regex compiler will

interpret it as meaning “zero or more occurrences of se”.

• If you apply this regex to the same string, you will encounter a

total of 32 matches, because every character in the string

would match the expression. (Remember? 0 or more

occurrences!)

CIS 4004: PHP – Part 4 – Pattern Matching Page 10 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• You’ll find parentheses are often used in conjunction with the

pipe operator to specify alternative regex specifications.

• For example, the regex gr(u|a)b with the string: “grab the

grub and pull” would match both “grub” and “grab”.

• Although regular expressions are quite powerful because of the

original rules, inherent limitations make their use impractical.

• For example, there is no regular expression that can be used to

specify the concept of “any character”.

• As a result of the inherent limitations, the practical

implementations of regex have grown to include a number of

other rules, the most common of which are shown beginning on

the next page.

CIS 4004: PHP – Part 4 – Pattern Matching Page 11 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• The special character “^” is used to identify the beginning of the

string.

• The special character “$” is used to identify the end of the

string.

• The special character “.” is used to identify any character.

• Any nonnumeric character following the character “\” is

interpreted literally (instead of being interpreted according to its

regex meaning). Note that this escaping sequence is relative to

the regex compiler and not to PHP. This means that you must

ensure that an actual backslash character reaches the regex

functions by escaping it as needed (i.e., if you’re using double

quotes, you will need to input \\).

CIS 4004: PHP – Part 4 – Pattern Matching Page 12 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• Any regular expression followed by a “+” character is a regular

expression composed of one or more instances of that regular expression.

• Any regular expression followed by a “?” character is a regular

expression composed of either zero or one instance of that regular

expression.

• Any regular expression followed by an expression of the type {min [, |,

max]} is a regular expression composed of a variable number of

instances of that regular expression. The min parameter indicates the

minimum acceptable number of instances, whereas the max parameter, if

present, indicates the maximum acceptable number of instances. If only

the comma is present, no upper limit exists. If only min is defined, it

indicates the only acceptable number of instances.

• Square brackets can be used to identify groups of characters acceptable

for a given character position.

CIS 4004: PHP – Part 4 – Pattern Matching Page 13 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• It’s sometimes useful to be able to recognize whether a portion

of a regular expression should appear at the beginning or the end

of a string.

• For example, suppose you’re trying to determine whether a

string represents a valid HTTP URL. The regex http://

would match both http://www.cs.ucf.edu, which is valid and

nhttp://www.cs.ucf.edu which is not valid, and could easily

represent a typo on the user’s part.

• Using the special character “^”, you can indicate that the

following regular expression should only be matched at the

beginning of the string. Thus, ^http:// will match only the

first of our two strings.

CIS 4004: PHP – Part 4 – Pattern Matching Page 14 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The same concept – although in reverse – applies to the end-of-

string marker “$, which indicates that the regular expression

preceding it must end exactly at the end of the string.

• Thus, com$ will match “amazon.com” but not

“communication”.

• Having a “wildcard” that can be used to match any character is

extremely useful in a wide range of scenarios, particularly

considering that the “.” character is considered a regular

expression in its own right, so that it can be combined with the

Kleene Start and any of the other modifiers.

CIS 4004: PHP – Part 4 – Pattern Matching Page 15 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Consider the regex: .+@.+\..+

• This regex can be used to indicate:

– At least one instance of any character, followed by

– The @ character, followed by

– At least one instance of any character, followed by

– The “.” character, followed by

– At least one instance of any character

• Can you guess what sort of string this regex might validate?

Does this look familiar? markl@cs.ucf.edu

It’s a very rough form of an email address. Notice how the backslash character was used to

force the regex compiler to interpret the next to last “.” as a literal character, rather than as

another instance of the “any character” regular expression.

CIS 4004: PHP – Part 4 – Pattern Matching Page 16 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The regex on the previous page is a fairly crude way of

checking the validity of an email address. After all, only letters

of the alphabet, the underscore character, the minus character,

and digits are allowed in the name, domain, and extension of an

email.

• This is where the range denominators come into play. As

mentioned previously (last paragraph of page 12), anything

within non-escaped square brackets represents a set of

alternatives for a particular character position. For example, the

regex [abc] indicated either an “a”, a “b”, or a “c” character.

However, representing something like “any character” by

including every possible symbol in the square brackets would

give rise to some ridiculously long regular expressions.

CIS 4004: PHP – Part 4 – Pattern Matching Page 17 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Fortunately, range denominators make it possible to specify a

“range” of characters by separating them with a dash.

• For example [a-z] means “any lowercase character.

• You can also specify more than one range and combine them

with individual characters by placing them side-by-side.

• For example, our email validation regex could be satisfied by

the expression [A-Za-z0-9_].

• Using this new tool our full email validation expression

becomes:

[A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]+

CIS 4004: PHP – Part 4 – Pattern Matching Page 18 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The range specifications that we have seen so far are all

inclusive – that is, they tell the regex compiler which characters

can be in the string. Sometimes, its more convenient to use

exclusive specification, dictating that any character except the

characters you specify are valid.

• This is done by prepending a caret character (^) to the character

specifications inside the square bracket.

• For example, [^A-Z] means any character except any

uppercase letter of the alphabet.

CIS 4004: PHP – Part 4 – Pattern Matching Page 19 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Going back to our email example, its still not as good as it could

be because we know for sure that a domain extension must have

a minimum of two characters and a maximum of four.

• We can further modify our regex by using the minimum-

maximum length specifier introduced on page 12.

[A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{2,4}

• Naturally, you might want to allow only email addresses that

have a three-letter domain. This can be accomplished by

omitting the comma and the max parameter from the length

specifier, as in:

[A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3}

CIS 4004: PHP – Part 4 – Pattern Matching Page 20 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• On the other hand, you might want to leave the maximum

number of characters open in anticipation of the fact that longer

domain extensions might be introduced in the future, so you

could use the regex:

[A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3,}

• Which indicates that the last regex in the expression should be

repeated at least a minimum of three times, with no fixed upper

limit.

CIS 4004: PHP – Part 4 – Pattern Matching Page 21 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• POSIX (Portable Operating System Interface for uniX) is a

collection of standards that define some of the functionality that a

Unix operating system should support.

• One of these standards defines two flavors of regular expressions.

– BRE (Basic Regular Expressions) standardizes a flavor similar to the one
used by the traditional Unix grep command. This is probably the oldest

regular expression flavor still in use today.

– ERE (Extended Regular Expressions) standardizes a flavor similar to the
one used by the Unix egrep command. Most modern regex flavors are

extensions of the ERE flavor.

• The POSIX standard is the simplest form of regex available in

PHP (as opposed to the PCRE), and as such is the best way to learn

regular expressions.

CIS 4004: PHP – Part 4 – Pattern Matching Page 22 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• In addition to the standard rules of regex that we’ve already

discussed, the POSIX regex standard defines the concept of

character classes as a way to make it even easier to specify

character ranges.

• Character classes are always enclosed in a set of colon

characters (:) and must be enclosed in square brackets.

• There are 12 character classes defined in the POSIX standard.

These are listed in the table on the following page.

CIS 4004: PHP – Part 4 – Pattern Matching Page 23 Dr. Mark Llewellyn ©

Character class Description

alpha Represents a letter of the alphabet (either lower or upper case). Equivalent to
[A-Za-z]

digit Represents a digit between 0 and 9. Equivalent to [0-9]

alnum Represents an alphanumeric character. Equivalent to [0-9A-Za-z]

blank Represents “blank” characters, normally space and tab

cntrl Represents “control” characters, such as DEL, INS, and so on

graph Represents all printable characters except the space

lower Represents lowercase letters of the alphabet only

upper Represents uppercase letters of the alphabet only

print Represents all printable characters

punct Represent punctuation characters such as “.”, or “,”

space Represents the whitespace

xdigit Represents hexadecimal digits

The POSIX character classes

CIS 4004: PHP – Part 4 – Pattern Matching Page 24 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Rewriting our previous email regex using the POSIX standard

notation the following:

[A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{2,4}

becomes:

[[:alnum:]_]+@[[:alnum:]_]+\.[[:alnum:]_]{2,4}

• This notation is a bit simpler, and it unfortunately also makes

mistakes a little less obvious.

CIS 4004: PHP – Part 4 – Pattern Matching Page 25 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Another important concept introduced by the POSIX standard is

the reference.

• Recall that we discussed the use of parentheses to group regular

expressions (see page 6 – one of Kleene’s original regex

axioms).

• When you use parentheses in a POSIX regex, when the

expression is executed the interpreter assigns a numeric

identifier to each grouped expression that is matched.

• This identifier can be used in various operations – such as

finding and replacing.

• Consider the example on the following page:

CIS 4004: PHP – Part 4 – Pattern Matching Page 26 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Suppose we have the string: markl@cs.ucf.edu and the

regex:

([[:alnum:]_]+)@([[:alnum:]_]+)\.([[:alnum:]_]{2,4})

• The regex should match the email address string. However,

because we have grouped the username, domain name, and the

domain extensions, they will each become a reference, as shown

in the table below:

Reference Number Value

0 markl@cs.ucf.edu (string matches the entire regex)

1 markl

2 cs.ucf

3 edu

CIS 4004: PHP – Part 4 – Pattern Matching Page 27 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• PHP provides support for POSIX through functions of the

ereg* class.

• Unfortunately, as of PHP 5.3.0 the ereg* class has been

deprecated and is no longer being supported by PHP. This

means that you don’t want to develop new code using this class.

However, for the time being at least, you can get a brief

introduction to regex using the class if you don’t mind seeing a

warning message in your output. We’ll go ahead and use this

class of functions for the time being before we look at the PCRE

class of functions which have replaced the ereg* class.

CIS 4004: PHP – Part 4 – Pattern Matching Page 28 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• The simplest form or regex matching is performed through the

ereg() function which has the following form:

ereg(pattern, string[, matches]);

• The ereg() function works by compiling the regular

expression stored in pattern and then comparing it against

string. If the regex is matched against string, the result value

of the function is true – otherwise, it is false. If the

matches parameter is specified, it is filled with an array

containing all the references specified by pattern that were

found in string. Position 0 in this array represents the entire

matched string.

• An example is shown on the next page.

CIS 4004: PHP – Part 4 – Pattern Matching Page 29 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 30 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 31 Dr. Mark Llewellyn ©

A Practice Exercise

• See if you can create a POSIX based regex that will validate a

string representing a date in the format mm/dd/yyyy. In other

words, 04/05/2011 would be matched but 4/5/11 would not.

• Step 1: form a basic regex. A regex such as .+ (one or more

characters) is a bit too vague even as a starting point. So how

about something like this?

[[:digit:]]{2}/[[:digit:]]{2}/[[:digit:]]{4}

• This will work and validate 04/05/2011. However, it will also

validate 99/99/2011 which is not a valid date, so we still need

some refinement.

CIS 4004: PHP – Part 4 – Pattern Matching Page 32 Dr. Mark Llewellyn ©

A Practice Exercise (continued)

• For the month component of our regex, the first digit must

always be either a 0 or a 1, but the second digit can be any of 0

through 9.

• Similarly, for the day component of the regex, the first digit can

only be 0, 1, 2, or 3.

• Our final regex now becomes:

[0-1][[:digit:]]/[0-3][[:digit:]]/[[:digit:]]{4}

• This will work and validate 04/05/2011.

CIS 4004: PHP – Part 4 – Pattern Matching Page 33 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Perl-Compatible Regular Expressions (PCRE) are much more

powerful than their POSIX counterparts. This of course makes

them more complex and difficult to use as well, but well worth

the effort for PHP programmers/scripters.

• PCRE adds its own character classes to the extended regular

expressions available in the POSIX standard.

• There are nine of these character classes in PCRE and are shown

in the table on the next page.

CIS 4004: PHP – Part 4 – Pattern Matching Page 34 Dr. Mark Llewellyn ©

Character

class

Description

\w Represents a “word” character and is equivalent to the expression [A-Za-z0-9]

\W Represents the opposite of \w and is equivalent to the expression [^A-Za-z0-9]

\s Represents a whitespace character

\S Represents a non-whitespace character

\d Represents a digit and is equivalent to the expression [0-9]

\D Represents a non-digit (the opposite of \w) and is equivalent to the expression [^0-9]

\n Represents a new line character

\r Represents a return character

\t Represents a tab character

PCRE character classes

Perl-Compatible Regular Expressions (PCRE)

CIS 4004: PHP – Part 4 – Pattern Matching Page 35 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Using PCRE formatted regex allows for significantly more

concise regex than is possible for the POSIX formatted regex.

• Consider, for example, the email address validation expression

we developed in POSIX earlier:

[[:alnum:]_]+@[[:alnum:]_]+\.[[:alnum:]_]{2,4}

• Using the new character classes of PCRE this expression

becomes:

/\w+@\w+\.\w{2,4}/

Notice that the regex string now begins and ends with forward slashes. PCRE requires

that the actual regular expression be delimited by two characters. By convention, two

forward slashes are used, although any character other than the backslash that is not

alphanumeric would work just as well.

Note in the example script on the next page I added

another \.\w{2,4} term so that I could easily pickup

the sub-domain used in my email address.

CIS 4004: PHP – Part 4 – Pattern Matching Page 36 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 37 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Regardless of which character you use to delimit your PCRE

regex (I suggest you stick with the convention however), you

will need to escape the delimiter whenever you use it as part of

the regex itself.

• For example, /face\/off/ would be the PCRE equivalent

to the regex face/off.

• PCRE also extends the concept of references by making them

useful not only as a byproduct of the regex operation, but as part

of the operation itself.

• In PCRE, it is possible to use a reference that was defined

previously in a regular expression as part of the expression

itself. Consider the following example:

CIS 4004: PHP – Part 4 – Pattern Matching Page 38 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Suppose you have a situation where you need to verify that in

strings such as:

Mark is a cyclist. Mark’s specialty is road racing.

Karen is a cyclist. Karen’s specialty is road racing.

the name of the person to whom the sentence refers is the same

in both positions.

• Using a normal search-and-replace operation would take a

significant effort, and so would using a POSIX regex, simply

because you do not know the name of the person in advance.

• With PCRE this is a trivial task because you simply use a

reference within the regex as shown on the next page.

CIS 4004: PHP – Part 4 – Pattern Matching Page 39 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• You start by matching the first portion of the string. The name

is the first word:

/^(\w+) is a cyclist.

Next, you need to specify the name again, however, since we

enclosed the first instance of the name in parentheses we created

a reference. In the subsequent part of the expression you simply

recall that reference inside the regex itself and use it as needed.

/^(\w+) is a cyclist. \1’s specialty is road racing.

• The next page shows a PHP script that uses this example.

CIS 4004: PHP – Part 4 – Pattern Matching Page 40 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 41 Dr. Mark Llewellyn ©

Second case doesn’t match since

Karen is in the second name

position and no match with

reference 1.

First case works fine since Mark is

on the second name position and

matches with reference 1.

CIS 4004: PHP – Part 4 – Pattern Matching Page 42 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• To illustrate the power of the PCRE version of regex in PHP,

the next page provides a POSIX version of the previous

example of matching the two subjects.

• The conciseness of the PCRE version of regex should be

apparent after looking at this script.

CIS 4004: PHP – Part 4 – Pattern Matching Page 43 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 44 Dr. Mark Llewellyn ©

The POSIX version

works but is clearly

more complex and

requires more code.

CIS 4004: PHP – Part 4 – Pattern Matching Page 45 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• As the previous example illustrates, PHP provides support for

PCRE-formatted regular expression through the preg* class of

function.

• The main PCRE function in PHP is preg_match() which

has the following basic syntax:

preg_match(pattern, string [, matches [, flags]]);

• As with the ereg() function for the POSIX standard, the

preg_match() function causes the regex stored in

pattern to be matched against string, and nay references

matched are stored in matches.

CIS 4004: PHP – Part 4 – Pattern Matching Page 46 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The optional flags parameter can, for the time being, only

contain the value PREG_OFFSET_CAPTURE.

• If this parameter is specified, it will cause preg_match() to

change the format of matches so that it will contain both the text

and the position of each reference inside the string.

• When this parameter is specified, the matches array will contain

another array for each reference. The latter array, in turn,

contains both the string matched and its position within the

original string.

• The example on the following page illustrates both cases.

CIS 4004: PHP – Part 4 – Pattern Matching Page 47 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 48 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

CIS 4004: PHP – Part 4 – Pattern Matching Page 49 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Another very useful function in the preg* family is

preg_match_all(), which has the same syntax as the

preg_match() function, but searches a string for all the

occurrences of the regular expression, rather than for a specific

instance.

• The example on the following page illustrates the

preg_match_all() function.

CIS 4004: PHP – Part 4 – Pattern Matching Page 50 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 51 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

CIS 4004: PHP – Part 4 – Pattern Matching Page 52 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Search and replace operations using PCRE regex are handled by

the preg_replace() function. This function has the

following syntax:

preg_replace(pattern, replacement, string [, limit]);

• This function applies the regex pattern to string and then

substitutes the placeholders in replacement with the

references defined in it. The limit parameter can be used to

limit the number of replacements to a maximum number.

• The example on the following page illustrates three different

applications of this function. The first two simply replaces a

single word in the string, while the third replaces the entire

string.

CIS 4004: PHP – Part 4 – Pattern Matching Page 53 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 54 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

With the limit parameter set

to 1 only the first

occurrence of “on” is

replaced.

Entire strings are replaced

in this case.

CIS 4004: PHP – Part 4 – Pattern Matching Page 55 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The last preg* function that we’ll look at is

preg_split(),which has the following syntax:

preg_split(pattern, string [, limit [, flags]]);

• The preg_split() function works by breaking string in

substrings delimited by sequences of characters delimited by

pattern. The optional limit parameter can be used to

specify a maximum number of splitting operations (by default a

value of -1, 0, or null means no limit). The flags parameter,

on the other hand is used to modify the behavior of the function

as described in the table on the next page.

• An example using the preg_split() function appears on page 57.

CIS 4004: PHP – Part 4 – Pattern Matching Page 56 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

Flag Value Description of Function Behavior

PREG_SPLIT_NO_EMPTY Causes empty substrings to be discarded.

PREG_SPLIT_DELIM_CAPTURE Causes any reference inside pattern to be

captured and returned as part of the function’s

output.

PREG_SPLIT_OFFSET_CAPTURE Causes the position of each substring to be returned

as part of the function’s output (similar to
PREG_OFFSET_CAPTURE in preg_match().

Flag values for the preg_split() function

CIS 4004: PHP – Part 4 – Pattern Matching Page 57 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 58 Dr. Mark Llewellyn ©

In version 1, any

whitespace character or a

comma forces a split.

The third case splits the

string only on a whitespace

character and retains the

starting position of the

substring in the original

string.

In version 2, only a comma

forces a split regardless of

preceding or trailing

whitespace.

CIS 4004: PHP – Part 4 – Pattern Matching Page 59 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The last aspect of PCRE regex that we’ll examine is that of

assertions.

• In a regular expression, an assertion is a fact about the pattern

that must be true. For example, we’ve already shown how you

can use the ^ and $ metacharacters to make an assertion about

the position of the pattern in the string. Using the ^ requires that

the pattern appear at the beginning of the string, while the $

requires the pattern to appear at the end of the string.

• Another type of assertion in PCRE is that of a look-ahead

assertion. A look-ahead assertion places a condition on the

characters that follow the assertion. This allows you to specify

an additional pattern for a regex.

CIS 4004: PHP – Part 4 – Pattern Matching Page 60 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Look-ahead assertions are position dependent. This means that

the pattern in the assertion must be matched starting at the

current location in the string.

• To create a look-ahead assertion, you use an opening

parenthesis followed by a question mark, an equal sign, the

pattern for the assertion to test, and a closing parenthesis as

illustrated below:

(?=assertion)

• The example on the following page illustrates a couple of look-

ahead assertions.

CIS 4004: PHP – Part 4 – Pattern Matching Page 61 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 62 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

In version 1 look-ahead

assertion succeeds in

matching the 3 digits after

HEC.

In version 2 look-ahead

assertion fails to match 3

digits after HEC.

Version 3 illustrates

position dependence of the

look-ahead assertion. It

fails because it is

improperly positioned in the

string.

CIS 4004: PHP – Part 4 – Pattern Matching Page 63 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• A negative look-ahead assertion is similar to a look-ahead

assertion except that it checks to see that its pattern is not

matched.

• The syntax for a negative look-ahead assertion is similar to that

of a look-ahead assertion except that the equal sign is replaced

by an exclamation mark:

(?!assertion)

• The example on the following page illustrates the use of a

negative look-ahead assertion.

CIS 4004: PHP – Part 4 – Pattern Matching Page 64 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 4 – Pattern Matching Page 65 Dr. Mark Llewellyn ©

Practice Problems

• Here are a few regular expression practice problems. You might

try to construct regular expressions for these in both POSIX and

PCRE formats. I’ll post the solutions in a day or so.

1. Credit card numbers in the format 9999-9999-9999-9999

2. Zip codes in either 5 digit or 9 digit formats, e.g., 99999 or

99999-9999

3. Phone numbers in the format (area code) prefix – number.

4. Social security numbers.

